大数据分析方法有哪些(大数据能预测吗)

本书的主题是“预测分析”。

预测分析是从经验(数据)中学习并预测个人未来行为的技术,其目的在于帮助人们作出更好的决策。

人类自古就喜欢占卜问卦,希望能预知未未来。科学预测似乎能打破“人不能知晓未来”这一自然规律。通过严谨的方法整理“已知”数据信息,人们就可以越来越精准地预见未来。数学与科技的融合跨越了现在与未来的鸿沟。

摘录:

世界上总会有不可预测分析的“黑天鹅事件”,但大部分人类行为都具有惯常性和可预测性。

通过量化方法预测人类的行为。

描述性分析已经过时,因为它记录的是过去发生的事情,无法真正说明这些事情为何会发生。规范性分析通过实验监测或定向优化来告诉人们应该怎么做,这种数理分析应用范围小。

预测分析是从经验(数据)中学习并预测个人未来行为的技术,其目的在于帮助人们作出更好的决策。

大数据分析方法有哪些(大数据能预测吗)

预测就是力量。数据本身并不是黄金,只有从数据中提炼出来的规律和知识才是黄金。

即便预测的准确率较差,预测所产生的效用依然很高,小预测,大影响。即预测效应。

预测分析的应用包括:预测内容、采取行动。

预测模型:预测个人行为的机制。该模型通过分析个人特征(变量),得出预测分值。分值越高,个人就越有可能表现出所预测的行为。

预测模型归根到底只有一个目的:根据用户的不同参数,给用户打出单项分值。然后这项分值就会用作企业决策的参考,甚至引导企业采取什么样的举措。

创建预测模型的方法就是“决策树”。

预测领域属于个人隐私范畴,用间接方式来发现人们不愿主动披露的信息,这隐藏着深层次的伦理问题。

数据越多,力量越大;力量越大,也就越敏感。

数据是信息时代的新货币。

预测分析并不是深入探讨数据并去窥视个人数据。相反,预测分析是在“提炼”信息,即通过分析海量消费者信息中的浩繁数字来找出普遍适用的规律。

对于企业来说,知道什么并不重要,重要的是根据知道的信息做什么。

某些历史学家称,人类正在经历农业革命和工业革命后的第三次革命,即信息革命。信息革命的关键就是“让一切事物都数据化”。

从数据中学习,然后预测未来。

大数据应该称之为“大量数据”或“充分的数据”。

数据是规模更大的财富源泉,而且永远不会有枯竭的一天。

预测就是根据人的过去行为来预见其未来的行为。

大数据分析方法有哪些(大数据能预测吗)

使用预测分析时,并不知道分析对象之间是否存在因果关系,也不必去关注。

大数据分析方法有哪些(大数据能预测吗)

如果必然性是创新之母,那么偶然性就是创新之父。

预测分析技术的设计也在于通过偶然性去发现规律。

扼杀学习的凶手是过度学习。过度学习就是错将噪音当信息,对数据进行过度解读,忽视其内在真相。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 1543690857@qq.com 举报,一经查实,本站将立刻删除。
(0)
打赏 微信扫一扫 微信扫一扫

相关推荐